		M.Sc. Year I (Sen	nester-I)							
Sr No	Course Code	se Code Course -	Teaching Scheme (Hours)			Cualita	Exa	Total Manka		
5r. no.			L	Т	Р	Creatts	Theory	Tutorial	Practical	1 otal Marks
1	MA 101 S1	Mathematics – I	3	1	0	4	100	25	00	125
2	PH 102 S1/S2	Mechanics, Lasers and Fiber Optics	3	0	2	4	100	0	50	150
3	CY 104 S1/S2	Chemistry-I	3	0	2	4	100	00	50	150
4	CEME 105 S1	Engineering Drawing	2	0	4	4	00	00	100	100
5	CEME 105 S1/S2	Energy & Environmental Engineering	3	0	2	4	100	00	50	150
6	PHPH 101 S1	Branch Specific Course I	3	1	2	5	100	25	50	175
7	HU 107 S1/S2	Holistic Empowerment and Human Values	3	0	0	3	100	0	0	100
		Total	20	2	12	28`	600	50	300	950
	Total Contact Hours			34			1		·	1
	Total Cr	edits		28]				

		M.Sc. Year I	(Semester	-II)						
C- N-	Comme Colle	G	Teachir	ng Scheme	(Hours)	Carallita	Exa			
Sr. No.	Course Code	Course	L	Т	Р	Credits	Theory	Tutorial	Practical	I otal Marks
1	MA 114 S2	Mathematics – II	3	1	0	4	100	25	0	125
2	PH 113 S2/S1	Physics of Materials and Nuclei	4	0	0	4	100	0	0	100
3	AM 108 S2/S1	Engineering Mechanics	3	0	2	4	100	0	50	150
4	CS 109 S2/S1	Fundamentals of Computers and Programming	3	0	2	4	100	0	50	150
5	HU 110 S2/S1	English & Professional Communication	3	0	0	3	100	0	0	100
6	PHPH 102 S2	Branch Specific Course II	3	1	2	5	100	25	50	175
7	ME 111 S2/S1	Workshop Practice	0	0	4	2	0	0	50	50
	Т	19	2	10	26	600	50	200	850	
	Total Contact Hours			31	1				1	
Total Credits				26						

First year of Five Years Integrated M.Sc.(Physics) M.Sc. – I, Semester – I	L	Т	Р	С
PH 102 S1: Mechanics, Lasers and Fiber Optics	3	0	2	4

Cours In the	e Outcomes end of the semester students will able to:
CO1	Understand the concept of D'Alembert, Lagrangian and Hamiltonian classical mechanics
CO2	Explain the origin of quantum mechanics to Schrodinger' equation for particles in box
CO3	Tell about Maxwell's electromagnetic equations and classify the polarized light
CO4	Interpret the concept of Lasers and understand the working of various types of lasers
CO5	Understand the concept of fiber optics and knowing the application of it

Syllabus		
CLASSICAL MECHANICS	(10 Hours)	
Constraints, Generalized Coordinates, Velocities and momenta, D'Alembert's Princ	ciple, Lagrange's	
equation of motion, Planet orbits, Virial theorem, Calculus of variations, Variation	nal technique for	
many independent variables, Hamilton principle, Hamilton's canonical equation of		
motion, Physical significance of H, Advantage of Hamilton approach.		
QUANTUM MECHANICS	(10 Hours)	
Inadequacy of classical mechanics (black body radiation, photoelectric effect), W	Vave and particle	
duality of radiation, de Broglie concept of matter waves, Electron diffraction	, Heisenberg's	
uncertainty principle, Schrodinger's wave equation, Eigenvalues and eigenfunction	ns, Superposition	
principle, Interpretation of wave function, Particle confined in one		
dimensional infinite potential box.		
ELECTRODYNAMICS	(06 Hours)	
Electromagnetic waves, Maxwell's equations in vacuum & medium, Types of polar	rization, Internal	
field and Claussius-Mosotti equation		
LASERS	(08 Hours)	
Introduction to Laser, Characteristics of Lasers, Spontaneous and stimulated emissi	ons, Einstein's	
coefficients, Population inversion and lasing action, Laser systems: Ruby laser, He-	Ne Laser	
Semiconductor Laser, Advanced lasers, Holography.		
FIBER OPTICS	(08 Hours)	
Fermat's principle and Snell's law-optical fiber, Principle and construction, A	cceptance cone,	
Numerical aperture, V-Number, Types of fibers, Fabrication: Double Crucible Technique, Vapour		
phase Oxidation Process, Fiber optic communication principle, Fiber optic sensors, Other		
applications of optical fibers.		
(Total Contact T	Time: 42 Hours)	

BOOKS RECOMMENDED:

- 1. R. Resnick and D. Halliday Physics (Part I & II) Wiley 2007
- 2. A. Beiser Concept of the Modern Physics McGraw-Hill 2008
- 3. Landau and Lipschitz Mechanics Butterworth-Heinemann 1982
- 4. D. J. Griffiths Introduction to Electrodynamics Addison-Wesley 2012
- 5. W. T. Silfvast Laser Fundamentals Cambridge 2004

First year of Five Years Integrated M.Sc.(Physics) M.Sc. – I, Semester – I	L	Т	Р	С
PHPH 101 S1:Introduction to Classical Mechanics	3	1	2	5

Course	Course Outcomes				
In the	end of the semester students will able to:				
CO1	Understand the fundamentals of vectors and co-ordinate system				
CO2	Define basic concept of various laws of motions and moment of inertia				
CO3	Explain Euler's concept on rigid body motion				
CO4	Interpret elastic properties of materials and Rephrase the concept of hydrodynamics				
CO5	Analyze application of simple harmonic motions				
CO6	Classify the different oscillations and summarize it in resonance				

Syllabus VECTORS FUNDAMENTALS AND DIFFERENT **CO-ORDINATE** (08 Hours) **SYSTEM**

Unit vectors, Vector operations, Tripple products, Vector algebra in component form, differential calculus, Cartesian coordinate system, Spherical coordinate system, Cylindrical coordinate system.

NEWTON'S LAWS OF MOTION, CONSERVATION LAWS, MOMENTS (08 Hours) **OF INERTIA**

Mechanics of the particle, Equation of motion, Different conservation laws, Moments of inertia, Motion in central force field.

RIGID BODY MOTION

Euler's theorem, Angular momentum and kinetic energy, Euler's equation of motion, Euler's angles.

ELASTICITY & HYDRODYNAMICS

Stress and Strain, Young's modulus, Shear modulus and Bulk Modulus, Buoyancy, Types of fluid flow, Bernoulli's equations. Viscocity, Terminal Velocity.

SIMPLE HARMONIC MOTION

Restoring force, Elastic potential energy, Period and frequency, Energy, Pendulums, Applications of SHM.

OSCILLATIONS

Damped oscillations, forced oscillations, coupled oscillations & resonance.

(Total Contact Time: 42 Hours)

- (04 Hours)
 - (08 Hours)

(06 Hours)

(08 Hours)

BOOKS RECOMMENDED:

- 1. Mathur D. S., Mechanics, S. Chand & Company, 2000.
- 2. Takwale R. G. & Puranik P.S., Introduction to Classical Mechanics, Tata McGraw-Hill Book Co, 1997.
- 3. Feymann R. P., Lighton R. B. and Sands M., The Feynman Lectures in Physics Vol. 1, Narosa Publishers, 2008.
- 4. Verma H. C., Concepts of Physics, Vol. 1 & 2, Bharati Bhavan, 2007.
- 5. Landau L. D. & Lifshitz E M, Course on Theoretical Physics, Vol. 1: Mechanics, Addison- Wesley, 2002

First year of Five Years Integrated M.Sc.(Physics) M.Sc. – I, Semester – II	L	Т	Р	С
PH 113 S2/S1:Physics of Materials and Nuclei	4	0	0	4

Cours In the	e Outcomes end of the semester students will able to:
CO1	Define the concept of basic crystallography
CO2	Understand the importance of the semiconductors and find the parameters of it by Hall effects experiments
CO3	Explain the properties, synthesis types and application of nanomaterial
CO4	Give brief outline of magnetic materials and classify between conductor and superconductors
CO5	Understand the fundamental of statistical mechanics
CO6	Rephrase the nuclear properties and classify the elementary particles

Syllabus					
CRYSTALLOGRAPHY	(10 Hours)				
Crystalline and amorphous solids, Lattice and unit cell, Seven crystal system and	Bravais lattices,				
Symmetry operation, Miller indices, Atomic radius, Coordination number, Packing f	factor calculation				
for SC, BCC, FCC, Bragg's law of X-ray diffraction, Laue Method, Powder crystal					
method.					
SEMICONDUCTOR PHYSICS	(06 Hours)				
Introduction, Direct and indirect band gap semiconductors, Intrinsic and extrinsic se	emiconductors,				
Law of Mass action, Charge neutrality, Hall Effect.					
NANOMATERIALS	(10 Hours)				
Introduction and properties, Synthesis: Chemical vapour deposition, Ball milling an	d relevant				
applications, Carbon nanotubes: structure and properties and Synthesis: Arc method	l and Pulsed				
laser deposition, Applications.					
MAGNETIC MATERIALS, CONDUCTORS AND SUPERCONDUCTORS	(10 Hours)				
Magnetic materials: Definition of terms, Classification of magnetic materials	and properties,				
Domain theory of ferromagnetism, Hard and soft magnetic materials, Conductors	s: Classical free				
electron theory (Lorentz-Drude theory), Electrical conductivity, Superconductors: I	Definition,				
Meissner effect, Type I & II superconductors.					
STATISTICAL MECHANICS	(10 Hours)				
Macroscopic and microscopic states, Phase space, Condition for statistical equilibrium, Micro-					
canonical ensemble, canonical ensemble, Grand-canonical ensemble, Partition function, Bose-					
Einstein and Fermi-Dirac distribution.					
NUCLEAR AND PARTICLE PHYSICS	(10 Hours)				
Nuclear properties and forces, Nuclear models, Shell model, Nuclear reaction, Radi	oactivity,				

Types and half-lives, Application in determining the age of rock and fossils, Stellar nucleosynthesis, Fundamental forces, Particle physics, Classification of matter, Quark model, Neutrino properties and their detection.

(Total Contact Time: 56 Hours)

BOOKS RECOMMENDED:

- 1. R. Resnick and D. Halliday Physics (Part I & II) Wiley 2007.
- 2. A. Beiser Concept of the Modern Physics McGraw-Hill 2008.
- 3. K. Huang Statistical mechanics Willey 2008.
- 4. M. N. Avadhanulu and P. G. Kshirsagar, A text book of Engineering Physics S Chan 2009.
- 5. C. Kittel Introduction to Solid State Physics Wiley 2016.

Additional Books:

1. K. K. Chattopadhyay and A. N. Banerjee Nanoscience and Nanotechnology PHI 2014.

First year of Five Years Integrated M.Sc.(Physics) M.Sc. – I, Semester – II	L	Т	Р	С
PHPH 102 S2:Kinetic Theory and Thermodynamics	3	1	2	5

Cours	e Outcomes
In the	end of the semester students will able to:
CO1	Recall the fundamental concept of kinetic theory of gases
CO2	Compare properties of ideal gas and real Van der wall's gas state
CO3	Explain fundamental of thermodynamics laws and thermodynamic processes
CO4	Extend knowledge about Maxwell's thermodynamics relations and thermodynamic potentials
CO5	Classify the classical and quantum statistics distributions
CO6	Explain black body radiation in thermodynamics point of view

Syllabus	
KINETIC THEORY OF GASES	(04 Hours)
Postulates of kinetic theory of gases, velocity of gas molecules, Molecular energy, Kinetic-molecular	
model of an ideal-gas, kinetic interpretation of temperature, Degree of freedom of gas molecules,	
Maxwell's law of equipartition of energy.	
INTERMOLECULAR FORCES & TRANSPORT PHENOMENA	(04 Hours)
Viscosity of a gas, Thermal conductivity of gases, Van der wall's equation of state, Brownian	
motion.	
LAWS O F THERMODYNAMICS	(12 Hours)
Zeroth law of Thermodynamics, Ist and IInd laws of Thermodynamics, Concepts of temperature,	
Internal energy and entropy, Calculations of change of internal energy and entropy in various	
thermodynamic processes.	
THERMODYNAMIC POTENTIALS, HELMOLTZ & GIBBS	(10 Hours)
FUNCTIONS, MAXWELL RELATIONS	
Gibbs and Helmholtz energy, Gibbs paradox, Enthalpy, Maxwell's thermodynamic relations	
ELEMENTS OF STATISTICAL PHYSICS	(08 Hours)
Fermi Dirac, Maxwell Boltzmann and Bose Einstein distributions.	
THERMODYNAMICS OF BLACK BODIES	(04 Hours)
Black body and characteristics, Radiation principles like Rayleigh Jeans, Weins and Planck's law	
of black body radiation.	
(Total Contact T	'ime: 42 Hours)

BOOKS RECOMMENDED:

- Sears F.W. & Salingar, Thermodynamics, Kinetic theory and Statical Thermodynamics, 3rd Edition. Addison-Wesley/Pearson, 1975.
- 2. Young & Freedman, Sears and Zemansky's University Physics, Pearson Education, Singapore, 2004.
- 3. Feymann R. P., Leighton R. B. and Sands M., The Feymann Lectures in Physics, Vol.1 Narosa Publishers, 2008.
- 4. Zemanasky M. W., Heat and Thermodynamics, (McGraw Hill), 1957
- 5. Carter A., Classical and Statistical Thermodynamics, Pearson Education, 1999.